LAYER 1 or HRAN (Microwave with capacity 1 to 4xSTM-1 or Fibre Optic Network)
• Capacity dimensioning based on 75% utilization from initial plan
• Alternative route proposed (route protection)
• Fibre Optic (main or satellite) for first priority
LAYER 2 or LRAN (Microwave with capacity 63E1)
• Capacity dimensioning based on 75% utilization from initial plan
• Route protection proposed
• Radio fully protected (1+1 frequency, space diversity, and Hot Standby)\
LAYER 3 (Microwave with capacity 8E1, 16E1, 32E1 for route/rural area)
• Capacity dimensioning based on 75% utilization from initial plan
• Radio fully protected (1+1 frequency diversity, space diversity, and Hot Standby)
• Urban/dense urban link with capacity 16E1 will be in 1+1 protection
• Sub Urban/Route/Rural link with capacity 8E1 and 16E1 will be in 1+1 protection also
LAYER 4 (Microwave with capacity up to 4E1)
• Capacity dimensioning based on 75% utilization from initial plan
• Radio unprotected (1+0)
Thursday, January 12, 2012
[5] Space Diversity Calculation
Antenna separation
Theoretically, proper antenna separation is determined by the degree of fading correlation between both paths. The separation isvertical because the antennas are situated in two different layers of the atmosphere. In principle, the larger the separation between both antennas of a 1+1 system the better the improvement (less correlation) and consequently the larger the path length will be. The degree of correlation decreases exponentially and reaches a certain level for which no more detectable improvement is attained (the path length does not increase).
Several “rules of thumb” to find out reasonable antenna separation are found elsewhere in the literature. Two general such rules are frequently used,
Dsep (m)=200×lm |
and
Dsep (m)=80/fGHz |
where Dsep is the vertical separation in m, lm and fGHz are expressed in meter and GHz, respectively. Applying equation (1) and (2) to the studied frequency bands, the vertical antenna separations are as given in Table 1.
Frequency (GHz) | Dsep(m)=80/fGHz | Dsep (m)=200×lm |
7/8 | 11.4 | 8.6 |
13 | 6.2 | 4.6 |
15 | 5.3 | 4.0 |
18 | 4.4 | 3.3 |
Table 1: Vertical antenna separation expressed in meters as obtained by equation (1) and (2).
[4] LOS Survey Procedure
Tujuan:
tujuan LOS survey adalah untuk memverivikasi desain jaringan yang diusulkan layak, dengan mempertimbangkan line-of-sight bukan mencari semua alternatif yang mungkin.
A.Microwave LOS Survey : Process
Desain jaringan dan LOS survei dilakukan secara paralel tim survei harus memiliki komunikasi yang baik dengan TND.
B.Microwave LOS Survey : Theory
Fresnel Zone
Defined as an area or zone where the effective radiated power is evenly distributed and is surrounding the direct line-of-sight. About half of the radio signal energy travels through 1st fresnel ellipsoid. So, any obstruction within the fresnel ellipsoid has some impact on the Rx level.
K-Factor
Defined as measure of the ray curvature effect, produced by the variation in the Atmosphere Refraction Index with height. The K-Factor indicates the atmosphere state at a given time and its effect to radio ray curvature
In standard condition, k-factor is equal to 4/3 = 1.33
Other k-factor condition are :
K < 4/3, Sub-refractive atmosphere condition Ray path closer to the earth. The lowest k value corresponds to the highest probability that radio ray be obstructed by the ground
K > 4/3, super refractive atmosphere condition Ray path more distant from the earth. The range of the radio transmission can be significantly expanded. Unexpected interference may occur
Microwave LOS Survey : Visibility Criteria
Typical and Minimum k factor :
Typical k = 4/3 = 1.33
Minimum k = 2/3 = 0.67
Clearance Criteria
A link considered LOS when both below criteria are met :
Clearance > 100% with Typical k (= 1.33)
Clearance > 60% with Minimum k (= 0.67)
C.Microwave LOS Survey : Procedure
Survey Equipments :
Binoculars (preferably with built in compass)
Maps (preferably 1 : 50,000 or better)
Compass
GPS
Camera
Communication equipment
Altimeter
Inclinometer (preferably compass with built in inclinometer)
Laptop with path profile tool (Pathloss 4.0 or MS excel with macro)
Set of climbing tools (body harness, rope, carabineer, etc)
Set of mirrors and balloons if needed
In office preparation :
Prepare all survey equipments
List of hops to survey from Transmission Network Design team. Make sure that the coordinate of all BTS / site location is included
Arrange site entrance permit to the if needed
Prepare the template of LOS survey report
Conduct preliminary map study (with Bakosurtanal maps or reliable digital maps) for the proposed BTS location to the proposed Far End. If any indication that the proposed FE is not LOS, consider alternative FE and discuss with TND engineer
== Map Study ==
NE and FE coordinate is plotted into Topographic Map, and analyze the path along the link by reading the map notation & symbols
Elevation value of samples from each point along the path (each 0.2 – 0.5 km distance) will be noted, refer to map reading
Samples will be tabulated to generate path profile
Map study exercise will be perform in the next session
Microwave LOS Survey : Methods
Visibility
Using binoculars and compass to ensure the line of sight.
The get accurate azimuth, use the compass off the tower (preferably with some distant from the tower). Since magnetic component in the compass will easily affected with solid metal object, such as tower. This procedure is preferably done by 2 person (on and off tower), where off tower person will give direction of the correct azimuth
Make sure the path is free of large from large obstacles all the way to the other site
Take photographs on the direction of the path, at the position of proposed antenna, both from NE and FE
Suitable for hop with short distance, up to 7 km. At least one of the sites (NE or FE) has existing tower
Tracking Along the Path
Verify and confirm the proposed BTS location and the existing site with the aid of GPS (preferably connected with map source software)
Program the site coordinates (new and existing) in the GPS for direction references
Mark down possible and every visible landmarks as guidance
To perform a detailed sampling of the terrain, use the navigation features of the GPS and follow the trail along the path (if possible) to other site by taking note of the elevation every 0.5 km to 1 km if possible
If the topographical condition of the path is nearly impossible to trail along, take a off path trail about at least 20-100 m from the original path, and take note of the highest obstacle elevation with inclinometer
Tabulate the terrain elevation samples to the survey report to generate a path profile report
This method is suitable to perform LOS survey when no maps are available
Mirror Test
Requires at least 2 person (1 person at each station) and communication set
Both station must have existing tower
Need light source from the sun, cannot conduct at night or cloudy day
The position where light flash first visible is consider minimum LOS height
Balloons
Requires at least 2 person (1 person at each station) and communication set
Can be perform on green field LOS survey toward existing FE
Balloon color must be distinctive to surrounding environment (e.g. red) to make it easily visible from opposite station
Balloon cord should be mark at certain length, to take note how high balloon is flying
Difficult to perform, since survey engineer need to carry a lot of equipment (balloon, gas tube, etc)
LOS Survey Methods Matrix
Output
Site survey is conducted on the existing sites, to check site feasibility for additional microwave equipment as proposed in network design
Verify the tower space for specific proposed antenna height, refer to LOS survey result
Calculate the feeder / coaxial cable length requirement
Verify the indoor space availability for microwave equipment
Verify the power supply availability (DC breaker, rectifier capacity)
[3] Frequency Scanning Procedure
Tujuan dari frequency scanning adalah untuk mengetahui channel frekuensi yang dapat digunakan dan bebas dari interferensi link lain.
Scanning frequency biasanya dilakukan di daerah perkotaan yang frekuensi channelnya sudah padat, jenis link nya dapat berupa link Hub site, POI, A-ter link, dll.
A. Perangkat yang dibutuhkan
Perangkat yang dibutuhkan adalah sbb :
�� Spectrum analyzer (0,1 KHz - 26GHz)
�� Antena Horn 3 jenis (7-10 GHz, 12,4-18GHz, 10-15 GHz, 15-22 GHz, 18-26GHz)
Low Noise Amplifier �� - 20 dB LNA
�� Coaxial kabel
�� Clamp / mounting kit11
�� kamera digital (4M piksel)
�� Kompas
�� GPS
�� telepon / selular /HT
B. Konfigurasi
Antenna sebaiknya dilettakan sesuai dengan ketinggian referensi LOS minimumnya atau sesuai dengan ketinggian plan.
C.Pengukuran
Pengukuran dilakukan sesuai dengan arah antena Near End ke Far End :
1. Antena azimut (pengukuran harus dilakukan juga untuk + 30 o dan 60 o dari
antena azimut. Total 5 pengukuran untuk 1 polarisasi)
2. Tinggi Antena
3. Frekuensi dan band sub
4. Kapasitas
5. Polarisasi (selalu Vertikal, kecuali tidak ada frekuensi yang jelas pada polarisasi vertikal - snapshot) & Data pengukuran harus disediakan - kemudian ke polarisasi horizontal)
Hasil pengukuran harus dalam format file Excel.
Scanning frequency biasanya dilakukan di daerah perkotaan yang frekuensi channelnya sudah padat, jenis link nya dapat berupa link Hub site, POI, A-ter link, dll.
A. Perangkat yang dibutuhkan
Perangkat yang dibutuhkan adalah sbb :
�� Spectrum analyzer (0,1 KHz - 26GHz)
�� Antena Horn 3 jenis (7-10 GHz, 12,4-18GHz, 10-15 GHz, 15-22 GHz, 18-26GHz)
Low Noise Amplifier �� - 20 dB LNA
�� Coaxial kabel
�� Clamp / mounting kit11
�� kamera digital (4M piksel)
�� Kompas
�� GPS
�� telepon / selular /HT
B. Konfigurasi
Antenna sebaiknya dilettakan sesuai dengan ketinggian referensi LOS minimumnya atau sesuai dengan ketinggian plan.
C.Pengukuran
Pengukuran dilakukan sesuai dengan arah antena Near End ke Far End :
1. Antena azimut (pengukuran harus dilakukan juga untuk + 30 o dan 60 o dari
antena azimut. Total 5 pengukuran untuk 1 polarisasi)
2. Tinggi Antena
3. Frekuensi dan band sub
4. Kapasitas
5. Polarisasi (selalu Vertikal, kecuali tidak ada frekuensi yang jelas pada polarisasi vertikal - snapshot) & Data pengukuran harus disediakan - kemudian ke polarisasi horizontal)
Hasil pengukuran harus dalam format file Excel.
[2] Frequency Band
Perencanaan frekuensi adalah bagian dari transmisi microwave, di indonesia badan pemerintah yang khusus menangani tugas ini adalah Direktorat Jenderal Pos dan Telekomunikasi (DJPT)
A. Frekuensi Band yang Tersedia
DJPT telah menciptakan sebuah peraturan di Indonesia bahwa frekuensi yang dapat digunakan adalah sebagai berikut :
- 4 GHz ITU-R F.1099-Annex-1 BW = 40 MHz
- 6 GHz ITU-R F.384-7-BW = 40 MHz
- 7 GHz ITU-R F.385-6-BW = 7, 14, 28 MHz
- 8 GHz ITU-RF.386 Annex-1 BW = 29,65, 28 MHz
- 11 GHz ITU-R F.387-6-BW = 40 MHz
- 13 GHz ITU-RF.497-6 BW = 3,5, 7, 14, 28 MHz
- 15 GHz ITU-RF.636-3 BW = 3,5, 7, 14, 28 MHz
- 18 GHz ITU-R F.595-Lampiran-5 BW = 7 MHz
- 23 GHz ITU-RF.637-2 Lampiran 5 BW = 3,5, 7, 14, 28 MHz
Pemilihan teknik modulasi yang akan digunakan pada hop didasarkan atas 3 faktor:
• regulasi untuk channelization pada frekuensi tertentu di negara tertentu / daerah
• link analisis
• kapasitas yang dibutuhkan.
B. Frekuensi Planning
Perencanaan frekuensi adalah proses iteratif 3 langkah utama:
a. Alokasikan saluran frekuensi
b. Perhitungan interferensi
c. Menganalisis hasilnya, jika hasilnya masih buruk kembali ke point b.
Ambang degradasi maksimum yang disebabkan oleh interference (threshold degradation) :
- Rural : < = 1 dB
- Sub Urban : <= 1 dB
- Metro : < = 3 dB
untuk spektrum frekuensi yang lebih lengkap dapat di unduh pada web site DJPT : http://kominfo.go.id/pengumuman/detail/1297/Regulasi+Kebijakan+Penataan+Spektrum+Freukensi+Radio+,untuk dokumen pengkanalan frekuensi dapat diunduh :http://denysetia.files.wordpress.com/2011/09/pengumuman-postel-pengkanalan-microwave-link-4-23-ghz.pdf
[1] Topologi Jaringan Transmisi
Topologi jaringan transmisi microwave dapat dikelompokkan menjadi 4 topologi
1. Ring
link : Hub-A-B-C-D-E-F-Hub
2. Star
link : A-Hub, B-Hub, C-Hub, D-Hub, E-Hub, F-Hub
Petunjuk : topologi ini ditujukkan untuk jaringan yang kecil maksimal 16 antenna yang mengarah ke Hub site, sangat cocok digunakan diarea outer untuk mengumpulkan link-link ke satu titik hub site.
3. Chain/Tandem/Tree
link : A-B-C-Hub, D-E-F-Hub
Petunjuk :topologi digunakan untuk area rural (maksimal 5 hops untuk setiap chain)
4. Spur
link : A-Hub
Petunjuk : topologi ini didefinisikan sebagai satu link yang terkoneksi ke hub site.
1. Ring
link : Hub-A-B-C-D-E-F-Hub
Petunjuk : topologi ini dibutuhkan ketika dinginkan jaringan dengan availability yang tinggi, semua link
dengan konfigurasi 1 + 0, setiap link dengan kapasitas nx STM-1, SNCP proteksi available, jumlah node direkomendasikan adalah genap, minimal 4 node maksimal 6 node, konfigurasi ini direkomendasikan untuk area inner sebagai site collector dari link-link yg berasal dari outer area.
link : A-Hub, B-Hub, C-Hub, D-Hub, E-Hub, F-Hub
Petunjuk : topologi ini ditujukkan untuk jaringan yang kecil maksimal 16 antenna yang mengarah ke Hub site, sangat cocok digunakan diarea outer untuk mengumpulkan link-link ke satu titik hub site.
3. Chain/Tandem/Tree
link : A-B-C-Hub, D-E-F-Hub
Petunjuk :topologi digunakan untuk area rural (maksimal 5 hops untuk setiap chain)
4. Spur
link : A-Hub
Petunjuk : topologi ini didefinisikan sebagai satu link yang terkoneksi ke hub site.
Subscribe to:
Posts (Atom)